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This talk

▶ We study the tail behavior of

WT =
T∑
t=1

Xt ,

where
▶ {Xt}∞t=1: some stochastic process,
▶ T : some stopping time.

▶ Main result: WT has exponential tails under fairly mild
conditions; simple formula for the tail exponent α.

▶ Example: if {Xt}∞t=1 is iid and T is geometric with mean
1/p, then

(1− p) E[eαX ] = 1.
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Why this problem is interesting
▶ Many empirical size distributions obey power laws

(e.g., city size (Gabaix, 1999), firm size (Axtell, 2001),
income, consumption (Toda and Walsh, 2015), wealth, etc.)

P(S > s) ∼ s−α,

where S : size.

▶ Popular explanation is “random growth model”: St = GtSt−1,
where G : gross growth rate.

▶ Taking logarithm and setting Wt = log St , Xt = logGt , we
obtain the random walk

Wt = Wt−1 + Xt .

Hence if W0 = 0, we have WT =
∑T

t=1 Xt .
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Questions

▶ Most existing explanations using random growth assume iid
Gaussian environment (geometric Brownian motion; Reed,
2001).

▶ Given ubiquity of power law distributions in empirical data
(likely non-iid and non-Gaussian), generative mechanism
should be robust (not depend on iid Gaussian assumptions).

Questions:

1. Do non-Gaussian, Markovian random growth processes
generate Pareto tails?

2. If so, how is Pareto exponent determined?
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Contribution

▶ Characterize tail behavior of random growth models with
non-Gaussian, Markovian shocks.

1. Analytical determination of Pareto exponent.
2. Comparative statics.

▶ Two applications:

1. Estimate random growth model using Japanese
prefecture/municipality population data. Model consistent
with observed Pareto exponent but only after allowing for
Markovian dynamics.

2. Estimate random growth model using US county daily COVID
case data. Model consistent with observed Pareto exponent.
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Basic setup

Basic setup of Beare and Toda (2022)
Object of interest:

▶ We seek to characterize the behavior of tail probabilities

P(WT > w) and P(WT < −w)

as w → ∞, where. . .

Markov additive process:

▶ {Wt , Jt}∞t=0 is a Markov additive process, which means. . .

Hidden Markov state:

▶ {Jt}∞t=0 is a time homogeneous Markov chain taking values in
N = {1, . . . ,N}.

▶ The transition probability matrix is Π = (πnn′), where
πnn′ = P(J1 = n′ | J0 = n).

▶ Initial condition: ϖ is the N × 1 vector of probabilities
P(J0 = n), n = 1, . . . ,N.
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Basic setup

Basic setup of Beare and Toda (2022)

Increment process:

▶ W0 = 0, Wt =
∑t

s=1 Xs .

▶ Distribution of increment Xt = Wt −Wt−1 depends only on
(Jt−1, Jt) = (n, n′).

▶ Special cases:

1. If N = 1, then {Xt}∞t=1 is iid.
2. If Xt = constant conditional on Jt , then {Xt}∞t=1 is a

finite-state Markov chain.

Stopping time:

▶ {Wt}∞t=0 stops with state-dependent probability.

▶ υnn′ = P(T > t | Jt−1 = n, Jt = n′,T ≥ t): conditional
survival probability.

▶ Υ = (υnn′): survival probability matrix.
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Basic setup

Basic setup of Beare and Toda (2022)

Conditional moment generating function:

▶ For s ∈ R, define ψnn′(s) = E
[
esX1

∣∣ J0 = n, J1 = n′
]
∈ (0,∞].

▶ Ψ(s) = (ψnn′(s)): N × N matrix of conditional MGFs.

Region of convergence:

▶ We define

I =
{
s ∈ R : ψnn′(s) <∞ for all n, n′ ∈ N

}
.

▶ I is an interval containing zero, with possibly infinite
endpoints.

▶ I is the intersection of the N2 regions of convergence of the
conditional moment generating functions of Xt given
(Jt−1, Jt) = (n, n′).
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Main result

Assumption

Assumption

1. The matrix Υ⊙ Π is irreducible.

2. There exists a pair (n, n′) such that υnn′ < 1 and πnn′ > 0.

▶ Υ⊙ Π is Hadamard (entry-wise) product.

▶ A matrix A is irreducible if for any pair (n, n′), there exists k
such that |A|knn′ > 0.

▶ Intuitively, irreducibility of Υ⊙ Π means we can transition
from n to n′ eventually without stopping.

▶ υnn′ < 1 and πnn′ > 0 guarantees T <∞ almost surely.

▶ ρ(A): spectral radius (largest absolute value of all
eigenvalues) of A.
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Main result

Main result

Theorem
As a function of s ∈ I, the spectral radius ρ(Υ⊙ Π⊙Ψ(s)) is
convex and less than 1 at s = 0. There can be at most one
positive α ∈ I such that

ρ(Υ⊙ Π⊙Ψ(α)) = 1,

and if such α exists in the interior of I then

lim
w→∞

1

w
logP(WT > w) = −α.

▶ Similar statement holds for lower tail (−β < 0 instead of
α > 0).
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Main result

Determination of α and β

s

ρ(Υ⊙ Π⊙Ψ(s))

−β α0

1

Left endpoint of I Right endpoint of I
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Main result

Refinement

Theorem
Let everything be as above. Then there exist A,B > 0 such that

lim
w→∞

eαwP(WT > w) = A,

lim
w→∞

eβwP(WT < −w) = B

except when there exist c > 0 and ann′ ∈ R such that

supp(X1|J0 = n, J1 = n′) ⊂ ann′ + cZ

for all n, n′ ∈ N . (We can take ann = 0 if υnnπnn > 0.)
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Main result

Geometrically stopped random growth processes

Theorem
Let everything be as above. Let S0 > 0 be a random variable
independent of WT satisfying E[Sα+ϵ

0 ] <∞ for some ϵ > 0, and
define the random variable S = S0e

WT . Then there exist numbers
0 < A1 ≤ A2 <∞ such that

A1 = lim inf
s→∞

sαP(S > s) ≤ lim sup
s→∞

sαP(S > s) = A2,

with A1 = A2 = A unless there exist c > 0 and ann′ ∈ R such that
supp(X1|J0 = n, J1 = n′) ⊂ ann′ + cZ for all n, n′ ∈ N .

▶ S has a Pareto upper tail with exponent α.
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Idea

Proof of main result

▶ The proof uses several mathematical results:

1. Nakagawa (2007)’s Tauberian Theorem and its refinement
2. Convex inequalities for spectral radius
3. Perron-Frobenius Theorem
4. Residue formula for matrix pencil inverses

▶ For the iid case, we can avoid 2–4 above.

Skip proof
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Idea

Laplace transform
▶ For a random variable X with cdf F , let

ψ(s) = E[esX ] =

∫ ∞

−∞
esx dF (x)

be its moment generating function (mgf), which is also known
as the (two-sided) Laplace transform.

▶ Since esx convex in s, so is ψ(s); hence its domain
I = {s ∈ R : ψ(s) <∞} is an interval. Let −β ≤ 0 ≤ α be
boundary points (may be 0 or ±∞).

▶ For z ∈ C, by definition of Lebesgue integral,

ψ(z) = E[ezX ] =

∫ ∞

−∞
ezx dF (x)

exists and finite if and only if Re z ∈ I. ψ(z) holomorphic on
strip of analiticity S = {z ∈ C : −β < Re z < α}.
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Idea

Strip of holomorphicity
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Idea

Tauberian theorem

Theorem (Essentially, Theorem 5* of Nakagawa, 2007)

Let X be a real random variable and ψ(z) = E[ezX ] its Laplace
transform with right abscissa of convergence 0 < α <∞ and strip
of holomorphicity S. Suppose A := lims↑α(α− s)ψ(s) exists, and
let B be the supremum of all b > 0 such that Ψ(z) + A(z − α)−1

continuously extends to S+
b = S ∪ {z ∈ C : z = α+ it, |t| < b}.

Suppose that B > 0. Then we have

2πA/B

e2πα/B − 1
≤ lim inf

x→∞
eαxP(X > x)

≤ lim sup
x→∞

eαxP(X > x) ≤ 2πA/B

1− e−2πα/B
,

where the bounds should be read as A/α if B = ∞.
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Idea

Discussion

▶ By previous result, taking logarithm and letting x → ∞, we
get

lim
x→∞

logP(X > x)

x
= −α,

which is Nakagawa (2007)’s main result.

▶ Example: mgf of exponential distribution with exponent α is

ψ(z) =

∫ ∞

0
αe−αxezx dx =

α

α− z
,

so we can take A = α and B = ∞.
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Idea

Proof of main result for iid case
▶ Let {Xt}∞t=1 be iid with mgf ψX (z) = E[ezX ].

▶ mgf of WT =
∑T

t=1 Xt when T is geometric with mean 1/p is

ψW (z) =
∞∑
k=1

(1− p)k−1p(ψX (z))
k =

pψX (z)

1− (1− p)ψX (z)
.

▶ Since ψX (z) holomorphic, pole of ψW (z) satisfies
ψX (z) =

1
1−p .

▶ Using convexity of ψX (s + it) with respect to s, easy to show
pole is simple.

▶ Hence assumption of Tauberian theorem satisfied. Tail
exponents satisfy

E[eαX ] = E[e−βX ] =
1

1− p
.
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Japanese municipality populations

Application 1: Power law in Japanese municipalities

▶ Main question: are time series properties of population
dynamics estimated from panel consistent with a stationary
Pareto distribution estimated from cross-section?

▶ Estimate either at
▶ 47 prefecture level (1873-) or
▶ 1741 municipality level (1970-)
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Japanese municipality populations

Historical background

▶ Edo era: 1603-1868. Japan was divided into provinces called
han, which were controlled by feudal lords called daimyō. No
free movement of people across regions.

▶ 1868: Meiji Restoration. Free movement of people.

▶ 1871: Abolition of the han system (haihan-chiken). Number
and boundary of prefectures settled by 1889

▶ Boundaries of modern prefectures largely follow those of
ryoseikoku (province) established in the Nara era (8th century)
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Japanese municipality populations

Modern prefectures
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Japanese municipality populations

Ryoseikoku
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Japanese municipality populations

Population of selected prefectures

Year

1880 1900 1920 1940 1960 1980 2000

P
o
p
u
la

ti
o
n

10
2

10
3

10
4

10
5

Hokkaido

Niigata

Tottori
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Japanese municipality populations

Cross-sectional estimation

▶ For each year, assume that the cross-sectional distribution of
prefecture population is Pareto-lognormal (product of
independent Pareto and lognormal distributions).

▶ Three parameters (µ, σ, α), mean and standard deviation of
lognormal component and Pareto exponent.

▶ Lognormal is special case by setting α = ∞.
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Japanese municipality populations

Pareto exponents

Year

1880 1900 1920 1940 1960 1980 2000

P
a
re

to
 e

x
p
o
n
e
n
t

1

2

3

4

5

Pareto-lognormal
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Japanese municipality populations

Log-log plot
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Japanese municipality populations

Likelihood ratio tests

Year
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(a) Test of lognormality (α = ∞).

Year

1880 1900 1920 1940 1960 1980 2000
p
-v

a
lu

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) Test of Zipf’s law (α = 1).
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Japanese municipality populations

Panel estimation
▶ Assume relative size Sit of prefecture i in year t follows

random growth process Si ,t+1 = Gi ,t+1Sit , where Gi ,t+1: gross
growth rate between year t and t + 1.

▶ N-state Markov switching model with conditionally Gaussian
shocks:

logGi ,t+1 | nit = n ∼ N(µn, σ
2
n),

where state nit evolves as a Markov chain with transition
probability matrix Π.

▶ Consider N = 1, 2, 3; estimate parameters from post war data
by maximum likelihood using Hamilton (1989) filter.

▶ Compute implied Pareto exponent by solving

ρ(Π diag(eµ1s+σ2
1s

2/2, . . . , eµN s+σ2
N s

2/2)) =
1

1− p
.
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Japanese municipality populations

Estimation of random growth model

N 1

2 3

Π 1

[
0.9754 0.0246
0.0283 0.9717

] 0.9439 0.0561 0.0000
0.0145 0.9671 0.0184
0.0210 0.0141 0.9649



µ −0.0035

[
−0.0030 −0.0030

]⊤ [
−0.0122 −0.0022 0.0084

]⊤

σ 0.0111

[
0.0029 0.0169

]⊤ [
0.0053 0.0026 0.0199

]⊤

log L 9,925

11,638 12,388

α 56.7

26.8 1.61

α2015 1.3

1.3 1.3
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Japanese municipality populations

Estimation of random growth model

N 1 2

3

Π 1

[
0.9754 0.0246
0.0283 0.9717

]

0.9439 0.0561 0.0000
0.0145 0.9671 0.0184
0.0210 0.0141 0.9649



µ −0.0035
[
−0.0030 −0.0030

]⊤

[
−0.0122 −0.0022 0.0084

]⊤

σ 0.0111
[
0.0029 0.0169

]⊤

[
0.0053 0.0026 0.0199

]⊤

log L 9,925 11,638

12,388

α 56.7 26.8

1.61

α2015 1.3 1.3

1.3

34/52



Introduction Main result Proof of main result Applications Conclusion

Japanese municipality populations
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Japanese municipality populations

Cross-sectional estimation for municipalities
▶ Estimate Pareto exponent by maximum likelihood (Hill

estimator).
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Japanese municipality populations

Cross-sectional estimation for municipalities

(a) 1970. (b) 2010.
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Japanese municipality populations

Panel estimation for municipalities

▶ Consider N = 1, . . . , 5; estimate parameters by maximum
likelihood using Hamilton (1989) filter and
expectation-maximization algorithm.

▶ Compute implied Pareto exponent by solving

(1− p)ρ(Π diag(eµ1s+σ2
1s

2/2, . . . , eµN s+σ2
N s

2/2)) = 1.

▶ Choosing mean age T̄ = 1/p:
▶ Meiji Restoration is in 1868, so lower bound T̄ = 150.
▶ Kamakura Shogunate started in 1185, so upper bound

T̄ = 1000.
▶ Tokugawa Shogunate started and moved capital to Tokyo in

1603, so T̄ = 400 reasonable.
▶ Hence consider p = 1/1000, 1/400, 1/150.
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Japanese municipality populations
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Japanese municipality populations

Implied Pareto exponent

▶ With N = 1 (iid), α ≈ 8 ≫ 1.
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COVID-19 cases

Application 2: Power law in COVID-19 cases

▶ Main question: are growth dynamics and random stopping
consistent with Pareto exponent estimated from cross-section?

▶ Analysis from Beare and Toda (2020)
▶ Data:

▶ Daily COVID-19 case data from January 2020 to March 2020
▶ US counties (2,121 counties with at least one case out of

3,243 counties)
▶ Merge 5 boroughs of New York City as “New York”
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COVID-19 cases

SIR model

▶ Susceptible-Infected-Recovered (SIR) model:

Ṡ = −βSI ,
İ = βSI − γI ,

Ṙ = γI ,

S + I + R = 1

▶ At beginning of epidemic, we have S ≈ 1, I ≪ 1, R ≈ 0

▶ Easy to show that cumulative cases C := I + R grows at rate
β − γ

▶ In practice, cases grow randomly
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COVID-19 cases

Cases on 3/31/2020
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COVID-19 cases

Testing Gibrat’s law

▶ If Gibrat’s law holds, growth rate of cases should be
independent of current cases

▶ For each date t, estimate cross-sectional regression

∆ ln ci ,t+1 = β0t + β1t ln cit + β2t∆ ln cit + β3tDit + εit

▶ Here
▶ cit : cumulative cases in country i on date t
▶ Dit : number of days elapsed since first case reported
▶ εit : error term

▶ Gibrat’s law holds if β1t = β2t = β3t = 0
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COVID-19 cases

Daily estimates of β0t , β1t , β2t , β3t
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COVID-19 cases

Distribution of growth rate of cases
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COVID-19 cases

Distribution of days since first case
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COVID-19 cases

Implied Pareto exponent

▶ Distribution of growth rate is mixture of point mass at 0 and
gamma:

f (x) = πδ(0) + (1− π)
λα

Γ(α)
xα−1e−λx

with (π, α, λ) = (0.128, 2.30, 10.4)

▶ Distribution of days since first case is truncated logistic:

P(T = n) =
(1 + ϕ)(1− q)qn−1

(1 + ϕqn−1)(1 + ϕqn)

with (q, ϕ) = (0.825, 4.06)
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COVID-19 cases

Implied Pareto exponent

▶ MGF of log cases is

MY (z) =
∞∑
n=1

P(T = n)M(z)n,

where
M(z) = π + (1− π)(1− z/λ)−α

▶ Can show MY (z) has pole ζ with M(ζ) = 1/q, which gives
Pareto exponent

▶ Solving equation, get

ζ = λ

[
1−

(
1− π

1/q − π

)1/α
]
= 0.928
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COVID-19 cases

Implied Pareto exponent

ζ z

M(z)

0

1

1/q
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Conclusion and open questions

▶ Determination of Pareto exponent under
▶ Markov modulation
▶ Random stopping

▶ Many data sets known to obey power law, but generative
mechanism has not been tested often

▶ Evidence for
▶ Japanese population dynamics
▶ COVID dynamics
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Conclusion and open questions
▶ We considered random multiplicative growth process

St = GtSt−1, where St is “size” and Gt is “growth rate”
▶ This process is convenient because it becomes random walk

after taking logarithm, and we can explicitly compute Laplace
transform

▶ We can also provide certain economic model that generates
this process

▶ However, this assumption is restrictive, especially from
economic theoretical point of view

▶ More generally, it would be nice if we can generalize to
“asymptotically multiplicative growth process”

St = f (St−1,Xt),

where f is asymptotically linear in sense that

lim
s→∞

f (s, x)

s
= g(x)
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