

Recent Advances in the Theory of Power Law and Applications

Brendan K. Beare¹ Alexis Akira Toda²

¹School of Economics, University of Sydney

²Department of Economics, University of California San Diego

May 22, 2024

1/52

KOD KAR KED KED EE AAA

This talk

 \blacktriangleright We study the tail behavior of

$$
W_T = \sum_{t=1}^T X_t,
$$

where

- ▶ $\{X_t\}_{t=1}^{\infty}$: some stochastic process,
- \blacktriangleright T: some stopping time.
- \triangleright Main result: W_T has exponential tails under fairly mild conditions; simple formula for the tail exponent α .
- ▶ Example: if $\{X_t\}_{t=1}^{\infty}$ is IID and $\mathcal T$ is geometric with mean $1/p$, then

$$
(1 - p) \mathsf{E}[\mathrm{e}^{\alpha X}] = 1.
$$

KED KAR KED KED EE YAA

Why this problem is interesting

▶ Many empirical size distributions obey power laws (e.g., city size (Gabaix, [1999\)](#page-52-0), firm size (Axtell, [2001\)](#page-52-1), income, consumption (Toda and Walsh, [2015\)](#page-53-0), wealth, etc.)

$$
P(S>s) \sim s^{-\alpha},
$$

where S: size.

- ▶ Popular explanation is "random growth model": $S_t = G_t S_{t-1}$, where G: gross growth rate.
- \blacktriangleright Taking logarithm and setting $W_t = \log S_t$, $X_t = \log G_t$, we obtain the random walk

$$
W_t = W_{t-1} + X_t.
$$

Hence if $W_0 = 0$, we have $W_T = \sum_{t=1}^T X_t$ $W_T = \sum_{t=1}^T X_t$ $W_T = \sum_{t=1}^T X_t$ [.](#page-3-0) .
특히 (통) 통)를 900

Questions

- \triangleright Most existing explanations using random growth assume IID Gaussian environment (geometric Brownian motion; Reed, [2001\)](#page-53-1).
- \triangleright Given ubiquity of power law distributions in empirical data (likely non-IID and non-Gaussian), generative mechanism should be robust (not depend on IID Gaussian assumptions).

Questions:

- 1. Do non-Gaussian, Markovian random growth processes generate Pareto tails?
- 2. If so, how is Pareto exponent determined?

Contribution

- ▶ Characterize tail behavior of random growth models with non-Gaussian, Markovian shocks.
	- 1. Analytical determination of Pareto exponent.
	- 2. Comparative statics.
- \blacktriangleright Two applications:
	- 1. Estimate random growth model using Japanese prefecture/municipality population data. Model consistent with observed Pareto exponent but only after allowing for Markovian dynamics.
	- 2. Estimate random growth model using US county daily COVID case data. Model consistent with observed Pareto exponent.

Basic setup of Beare and Toda [\(2022\)](#page-52-2)

Object of interest:

 \triangleright We seek to characterize the behavior of tail probabilities

$$
P(W_T > w) \quad \text{and} \quad P(W_T < -w)
$$

6/52

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 바) 9 Q @

as $w \rightarrow \infty$, where...

Basic setup of Beare and Toda [\(2022\)](#page-52-2)

Object of interest:

 \triangleright We seek to characterize the behavior of tail probabilities

$$
P(W_T > w) \quad \text{and} \quad P(W_T < -w)
$$

7/52

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ [활]할 | ⊙ Q ⊙

as $w \rightarrow \infty$, where...

Markov additive process:

▶ ${W_t, J_t}_{t=0}^{\infty}$ is a Markov additive process, which means...

Basic setup of Beare and Toda [\(2022\)](#page-52-2)

Object of interest:

 \triangleright We seek to characterize the behavior of tail probabilities

$$
P(W_T > w) \quad \text{and} \quad P(W_T < -w)
$$

as $w \rightarrow \infty$, where...

Markov additive process:

▶ ${W_t, J_t}_{t=0}^{\infty}$ is a Markov additive process, which means... Hidden Markov state:

- ▶ $\{J_t\}_{t=0}^{\infty}$ is a time homogeneous Markov chain taking values in $\mathcal{N} = \{1, \ldots, N\}.$
- \blacktriangleright The transition probability matrix is $\Pi = (\pi_{nn'})$, where $\pi_{nn'} = P(J_1 = n' | J_0 = n).$
- Initial condition: ϖ is the $N \times 1$ vector of probabilities $P(J_0 = n), n = 1, \ldots, N$. K ロ K K @ K K 할 K K 할 K (할 H) 9 Q Q →

Basic setup of Beare and Toda [\(2022\)](#page-52-2)

Increment process:

$$
\blacktriangleright \ W_0 = 0, \ W_t = \sum_{s=1}^t X_s.
$$

▶ Distribution of increment $X_t = W_t - W_{t-1}$ depends only on $(J_{t-1}, J_t) = (n, n').$

- \blacktriangleright Special cases:
	- 1. If $N = 1$, then $\{X_t\}_{t=1}^{\infty}$ is IID.
	- 2. If X_t = constant conditional on J_t , then $\{X_t\}_{t=1}^{\infty}$ is a finite-state Markov chain.

Stopping time:

- ▶ ${W_t}_{t=0}^{\infty}$ stops with state-dependent probability.
- ▶ $v_{nn'} = P(T > t | J_{t-1} = n, J_t = n', T \ge t)$: conditional survival probability.
- \blacktriangleright $\Upsilon = (v_{nn'})$: survival probability matrix.

KEL KALKERKER EE VAN

Basic setup of Beare and Toda [\(2022\)](#page-52-2)

Conditional moment generating function:

- ▶ For $s \in \mathbb{R}$, define $\psi_{nn'}(s) = E \left[e^{sX_1} \mid J_0 = n, J_1 = n' \right] \in (0, \infty]$.
- $\blacktriangleright \psi(s) = (\psi_{nn'}(s))$: $N \times N$ matrix of conditional MGFs.

Region of convergence:

 \blacktriangleright We define

$$
\mathcal{I} = \left\{\mathsf{s} \in \mathbb{R}: \psi_{\mathsf{nn}'}(\mathsf{s}) < \infty \text{ for all } \mathsf{n}, \mathsf{n}' \in \mathcal{N} \right\}.
$$

- \triangleright *I* is an interval containing zero, with possibly infinite endpoints.
- \triangleright *T* is the intersection of the N^2 regions of convergence of the conditional moment generating functions of X_t given $(J_{t-1}, J_t) = (n, n').$

Assumption

Assumption

- 1. The matrix $\Upsilon \cap \Pi$ is irreducible.
- 2. There exists a pair (n, n') such that $v_{nn'} < 1$ and $\pi_{nn'} > 0$.

Assumption

Assumption

- 1. The matrix $\Upsilon \cap \Pi$ is irreducible.
- 2. There exists a pair (n, n') such that $v_{nn'} < 1$ and $\pi_{nn'} > 0$.
- ▶ Υ ⊙ Π is Hadamard (entry-wise) product.
- A matrix A is irreducible if for any pair (n, n') , there exists k such that $|A|_{nn'}^k > 0$.
- $▶$ Intuitively, irreducibility of $\Upsilon \odot \Pi$ means we can transition from n to n' eventually without stopping.
- \triangleright $v_{nn'}$ < 1 and $\pi_{nn'}$ > 0 guarantees $T < \infty$ almost surely.
- $\rho(A)$: spectral radius (largest absolute value of all eigenvalues) of A.

KOD KAR KED KED EE AAA

Main result

Theorem

As a function of $s \in \mathcal{I}$, the spectral radius $\rho(\Upsilon \odot \Pi \odot \Psi(s))$ is convex and less than 1 at $s = 0$. There can be at most one positive $\alpha \in \mathcal{I}$ such that

 $\rho(\Upsilon \odot \Pi \odot \Psi(\alpha)) = 1$,

and if such α exists in the interior of $\mathcal I$ then

$$
\lim_{w\to\infty}\frac{1}{w}\log P(W_{\mathcal{T}}>w)=-\alpha.
$$

▶ Similar statement holds for lower tail $(-\beta < 0$ instead of $\alpha > 0$).

KED KAR KED KED EE YAA

Determination of α and β

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 게 이익어 14/52

Refinement

Theorem

Let everything be as above. Then there exist $A, B > 0$ such that

$$
\lim_{w \to \infty} e^{\alpha w} P(W_T > w) = A,
$$

\n
$$
\lim_{w \to \infty} e^{\beta w} P(W_T < -w) = B
$$

except when there exist $c > 0$ and $a_{nn'} \in \mathbb{R}$ such that

$$
supp(X_1|J_0=n,J_1=n')\subset a_{nn'}+c\mathbb{Z}
$$

for all $n, n' \in \mathcal{N}$. (We can take $a_{nn} = 0$ if $v_{nn} \pi_{nn} > 0$.)

Geometrically stopped random growth processes

Theorem

Let everything be as above. Let $S_0 > 0$ be a random variable independent of $W_\mathcal{T}$ satisfying $\mathsf{E}[S_0^{\alpha+\epsilon}]<\infty$ for some $\epsilon>0$, and define the random variable $S = S_0 e^{W_T}$. Then there exist numbers $0 < A_1 \leq A_2 < \infty$ such that

$$
A_1=\liminf_{s\to\infty}s^{\alpha}\mathrm{P}(S>s)\leq \limsup_{s\to\infty}s^{\alpha}\mathrm{P}(S>s)=A_2,
$$

with $A_1 = A_2 = A$ unless there exist $c > 0$ and $a_{nn'} \in \mathbb{R}$ such that $\mathsf{supp}(X_1|J_0=n,J_1=n')\subset \mathsf{a}_{nn'}+c\mathbb{Z}$ for all $n,n'\in\mathcal{N}$.

 \triangleright S has a Pareto upper tail with exponent α .

Proof of main result

 \blacktriangleright The proof uses several mathematical results:

- 1. Nakagawa [\(2007\)](#page-53-2)'s Tauberian Theorem and its refinement
- 2. Convex inequalities for spectral radius
- 3. Perron-Frobenius Theorem
- 4. Residue formula for matrix pencil inverses
- \triangleright For the IID case, we can avoid 2–4 above.

Laplace transform

 \blacktriangleright For a random variable X with cdf F, let

$$
\psi(s) = \mathsf{E}[e^{sX}] = \int_{-\infty}^{\infty} e^{sx} dF(x)
$$

be its moment generating function (mgf), which is also known as the (two-sided) Laplace transform.

- Since e^{sx} convex in s, so is $\psi(s)$; hence its domain $\mathcal{I} = \{s \in \mathbb{R} : \psi(s) < \infty\}$ is an interval. Let $-\beta \leq 0 \leq \alpha$ be boundary points (may be 0 or $\pm \infty$).
- ▶ For $z \in \mathbb{C}$, by definition of Lebesgue integral,

$$
\psi(z) = \mathsf{E}[e^{zX}] = \int_{-\infty}^{\infty} e^{zx} dF(x)
$$

exists and finite if and only if Re $z \in \mathcal{I}$. $\psi(z)$ holomorphic on strip of analiticity $S = \{z \in \mathbb{C} : -\beta < \text{Re } z < \alpha\}$ $S = \{z \in \mathbb{C} : -\beta < \text{Re } z < \alpha\}$ $S = \{z \in \mathbb{C} : -\beta < \text{Re } z < \alpha\}$ $S = \{z \in \mathbb{C} : -\beta < \text{Re } z < \alpha\}$ $S = \{z \in \mathbb{C} : -\beta < \text{Re } z < \alpha\}$ $S = \{z \in \mathbb{C} : -\beta < \text{Re } z < \alpha\}$ [.](#page-15-0) $\overline{1}$ $\overline{$

Strip of holomorphicity

Tauberian theorem

Theorem (Essentially, Theorem 5* of Nakagawa, [2007\)](#page-53-2)

Let X be a real random variable and $\psi(z) = \mathsf{E}[\mathrm{e}^{z\mathsf{X}}]$ its Laplace transform with right abscissa of convergence $0 < \alpha < \infty$ and strip of holomorphicity S. Suppose $A := \lim_{s \uparrow a} (\alpha - s) \psi(s)$ exists, and let B be the supremum of all $b>0$ such that $\Psi(z)+A(z-\alpha)^{-1}$ continuously extends to $S_b^+ = \mathcal{S} \cup \{z \in \mathbb{C} : z = \alpha + it, |t| < b\}.$ Suppose that $B > 0$. Then we have

$$
\frac{2\pi A/B}{e^{2\pi\alpha/B}-1} \leq \liminf_{x\to\infty} e^{\alpha x} P(X > x)
$$

$$
\leq \limsup_{x\to\infty} e^{\alpha x} P(X > x) \leq \frac{2\pi A/B}{1-e^{-2\pi\alpha/B}},
$$

where the bounds should be read as A/α if $B = \infty$.

KED KAR KED KED EE YAA

Discussion

▶ By previous result, taking logarithm and letting $x \to \infty$, we get

$$
\lim_{x \to \infty} \frac{\log P(X > x)}{x} = -\alpha,
$$

which is Nakagawa [\(2007\)](#page-53-2)'s main result.

Example: mgf of exponential distribution with exponent α is

$$
\psi(z) = \int_0^\infty \alpha e^{-\alpha x} e^{zx} dx = \frac{\alpha}{\alpha - z},
$$

so we can take $A = \alpha$ and $B = \infty$.

KOD KAR KED KED EE AAA

Proof of main result for IID case

- ► Let ${X_t}_{t=1}^{\infty}$ be IID with mgf $\psi_X(z) = E[e^{zX}]$.
- \blacktriangleright mgf of $W_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} X_t$ when \mathcal{T} is geometric with mean $1/p$ is

$$
\psi_W(z) = \sum_{k=1}^{\infty} (1-p)^{k-1} p(\psi_X(z))^k = \frac{p\psi_X(z)}{1-(1-p)\psi_X(z)}.
$$

- ▶ Since $\psi_X(z)$ holomorphic, pole of $\psi_W(z)$ satisfies $\psi_X(z) = \frac{1}{1-\rho}.$
- \blacktriangleright Using convexity of $\psi_X(s + it)$ with respect to s, easy to show pole is simple.
- ▶ Hence assumption of Tauberian theorem satisfied. Tail exponents satisfy

$$
E[e^{\alpha X}] = E[e^{-\beta X}] = \frac{1}{1-\rho}.
$$

22/52

Application 1: Power law in Japanese municipalities

▶ Main question: are time series properties of population dynamics estimated from panel consistent with a stationary Pareto distribution estimated from cross-section?

23/52

KOD KAR KED KED EE AAA

- ▶ Estimate either at
	- ▶ 47 prefecture level (1873-) or
	- ▶ 1741 municipality level (1970-)

Historical background

- ▶ Edo era: 1603-1868. Japan was divided into provinces called han, which were controlled by feudal lords called d aimyo. No free movement of people across regions.
- ▶ 1868: Meiji Restoration. Free movement of people.
- ▶ 1871: Abolition of the *han* system (*haihan-chiken*). Number and boundary of prefectures settled by 1889
- ▶ Boundaries of modern prefectures largely follow those of ryoseikoku (province) established in the Nara era (8th century)

Modern prefectures

Ryoseikoku

Population of selected prefectures

重性 のへぐ 27/52

Cross-sectional estimation

- ▶ For each year, assume that the cross-sectional distribution of prefecture population is Pareto-lognormal (product of independent Pareto and lognormal distributions).
- \blacktriangleright Three parameters (μ, σ, α) , mean and standard deviation of lognormal component and Pareto exponent.

28/52

KOD KAR KED KED EE AAA

▶ Lognormal is special case by setting $\alpha = \infty$.

Pareto exponents

 $E|E \cap Q \cap Q$ 29/52

Log-log plot

Likelihood ratio tests

Kロトメ部トメミトメミト ミ性 のQで 31/52

Panel estimation

- Assume relative size S_{it} of prefecture *i* in year *t* follows random growth process $S_{i,t+1} = G_{i,t+1}S_{it}$, where $G_{i,t+1}$: gross growth rate between year t and $t + 1$.
- \triangleright N-state Markov switching model with conditionally Gaussian shocks:

$$
\log G_{i,t+1} \mid n_{it} = n \sim N(\mu_n, \sigma_n^2),
$$

where state n_{it} evolves as a Markov chain with transition probability matrix Π.

- ▶ Consider $N = 1, 2, 3$; estimate parameters from post war data by maximum likelihood using Hamilton [\(1989\)](#page-53-3) filter.
- ▶ Compute implied Pareto exponent by solving

$$
\rho(\Pi \operatorname{diag}(e^{\mu_1 s + \sigma_1^2 s^2/2}, \ldots, e^{\mu_N s + \sigma_N^2 s^2/2})) = \frac{1}{1 - \rho}.
$$

 $= \Omega$ 32/52

 $\begin{array}{ccccc} \left\langle 10 + \left\langle 39 + \left\langle 32 + \left\langle 42 + \right\rangle \right\rangle \right\rangle & & & \\ \left\langle 33 / 52 \right\rangle & & & \\ \end{array}$

Estimation of random growth model

Kロトメ部トメミトメミト ミ性 のQで

Estimation of random growth model

Kロトメ部トメミトメミト ミ性 のQで

Cross-sectional estimation for municipalities

▶ Estimate Pareto exponent by maximum likelihood (Hill estimator).

Cross-sectional estimation for municipalities

K ロト K 御 K K 著 K K 著 K (著) 第1章 10.9.06 37/52

Panel estimation for municipalities

- \triangleright Consider $N = 1, \ldots, 5$; estimate parameters by maximum likelihood using Hamilton [\(1989\)](#page-53-3) filter and expectation-maximization algorithm.
- ▶ Compute implied Pareto exponent by solving

$$
(1-p)\rho(\Pi \text{ diag}(e^{\mu_1 s + \sigma_1^2 s^2/2}, \dots, e^{\mu_N s + \sigma_N^2 s^2/2})) = 1.
$$

38/52

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그 로 ₩ 9 Q (N

Panel estimation for municipalities

- \triangleright Consider $N = 1, \ldots, 5$; estimate parameters by maximum likelihood using Hamilton [\(1989\)](#page-53-3) filter and expectation-maximization algorithm.
- \triangleright Compute implied Pareto exponent by solving

$$
(1-p)\rho(\Pi \text{ diag}(e^{\mu_1 s + \sigma_1^2 s^2/2}, \dots, e^{\mu_N s + \sigma_N^2 s^2/2})) = 1.
$$

$$
\blacktriangleright \text{ Choosing mean age } \bar{T} = 1/p:
$$

- ▶ Meiji Restoration is in 1868, so lower bound $\bar{T}=150$.
- ▶ Kamakura Shogunate started in 1185, so upper bound $T = 1000$.
- ▶ Tokugawa Shogunate started and moved capital to Tokyo in 1603, so $T = 400$ reasonable.
- ▶ Hence consider $p = 1/1000, 1/400, 1/150$ $p = 1/1000, 1/400, 1/150$ $p = 1/1000, 1/400, 1/150$ [.](#page-39-0)

▶ With $N = 1$ (IID), $\alpha \approx 8 \gg 1$.

Application 2: Power law in COVID-19 cases

- ▶ Main question: are growth dynamics and random stopping consistent with Pareto exponent estimated from cross-section?
- ▶ Analysis from Beare and Toda [\(2020\)](#page-52-3)
- \blacktriangleright Data:
	- Daily COVID-19 case data from January 2020 to March 2020
	- \triangleright US counties (2,121 counties with at least one case out of 3,243 counties)
	- ▶ Merge 5 boroughs of New York City as "New York"

KED KAR KED KED EE YAA

SIR model

▶ Susceptible-Infected-Recovered (SIR) model:

$$
\dot{S} = -\beta SI,
$$

\n
$$
\dot{l} = \beta SI - \gamma I,
$$

\n
$$
\dot{R} = \gamma I,
$$

\n
$$
S + I + R = 1
$$

- At beginning of epidemic, we have $S \approx 1$, $I \ll 1$, $R \approx 0$
- Easy to show that cumulative cases $C := I + R$ grows at rate $\beta - \gamma$
- ▶ In practice, cases grow randomly

Cases on 3/31/2020

Testing Gibrat's law

- ▶ If Gibrat's law holds, growth rate of cases should be independent of current cases
- \blacktriangleright For each date t, estimate cross-sectional regression

 Δ ln $c_{i,t+1}=\beta_{0t}+\beta_{1t}$ ln $c_{it}+\beta_{2t}\Delta$ ln $c_{it}+\beta_{3t}D_{it}+\varepsilon_{it}$

44/52

KED KAR KED KED EE YAA

- ▶ Here
	- \triangleright c_{it} : cumulative cases in country *i* on date *t*
	- \triangleright D_{it} : number of days elapsed since first case reported
	- \blacktriangleright ε_{it} : error term
- ▶ Gibrat's law holds if $\beta_{1t} = \beta_{2t} = \beta_{3t} = 0$

[Introduction](#page-1-0) [Main result](#page-5-0) [Proof of main result](#page-16-0) [Applications](#page-22-0) [Conclusion](#page-50-0) 0000000000

[COVID-19 cases](#page-40-0)

Daily estimates of $\beta_{0t}, \beta_{1t}, \beta_{2t}, \beta_{3t}$

Distribution of growth rate of cases

Distribution of days since first case

▶ Distribution of growth rate is mixture of point mass at 0 and gamma:

$$
f(x) = \pi \delta(0) + (1-\pi) \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}
$$

with $(\pi, \alpha, \lambda) = (0.128, 2.30, 10.4)$

▶ Distribution of days since first case is truncated logistic:

$$
\mathrm{P}(\,\mathcal{T}=n)=\frac{(1+\phi)(1-q)q^{n-1}}{(1+\phi q^{n-1})(1+\phi q^n)}
$$

48/52

KOD KAR KED KED EE AAA

with $(q, \phi) = (0.825, 4.06)$

▶ MGF of log cases is

$$
M_Y(z)=\sum_{n=1}^\infty P(T=n)M(z)^n,
$$

where

$$
M(z)=\pi+(1-\pi)(1-z/\lambda)^{-\alpha}
$$

- ▶ Can show $M_Y(z)$ has pole ζ with $M(\zeta) = 1/q$, which gives Pareto exponent
- ▶ Solving equation, get

$$
\zeta = \lambda \left[1 - \left(\frac{1 - \pi}{1/q - \pi} \right)^{1/\alpha} \right] = 0.928
$$

49/52

KOD KAR KED KED EE AAA

Conclusion and open questions

▶ Determination of Pareto exponent under

- ▶ Markov modulation
- \blacktriangleright Random stopping
- ▶ Many data sets known to obey power law, but generative mechanism has not been tested often
- ▶ Evidence for
	- ▶ Japanese population dynamics
	- ▶ COVID dynamics

Conclusion and open questions

- \triangleright We considered random multiplicative growth process
	- $S_t = G_t S_{t-1}$, where S_t is "size" and G_t is "growth rate"
		- ▶ This process is convenient because it becomes random walk after taking logarithm, and we can explicitly compute Laplace transform
		- ▶ We can also provide certain economic model that generates this process
- \blacktriangleright However, this assumption is restrictive, especially from economic theoretical point of view
- ▶ More generally, it would be nice if we can generalize to "asymptotically multiplicative growth process"

$$
S_t = f(S_{t-1}, X_t),
$$

where f is asymptotically linear in sense that

$$
\lim_{s \to \infty} \frac{f(s, x)}{s} = g(x) \qquad (52/52)
$$

References

Axtell, R. L. (2001). "Zipf Distribution of U.S. Firm Sizes". \blacksquare Science 293.5536, 1818-1820, DOI: [10.1126/science.1062081](https://doi.org/10.1126/science.1062081).

- S. Beare, B. K. and A. A. Toda (2020). "On the Emergence of a Power Law in the Distribution of COVID-19 Cases". Physica D: Nonlinear Phenomena 412, 132649, DOI: [10.1016/j.physd.2020.132649](https://doi.org/10.1016/j.physd.2020.132649).
-

Beare, B. K. and A. A. Toda (2022). "Determination of Pareto Exponents in Economic Models Driven by Markov Multiplicative Processes". Econometrica 90.4, 1811-1833. DOI: [10.3982/ECTA17984](https://doi.org/10.3982/ECTA17984).

F

Gabaix, X. (1999). "Zipf's Law for Cities: An Explanation". Quarterly Journal of Economics 114.3, 739-767. DOI: [10.1162/003355399556133](https://doi.org/10.1162/003355399556133). KEL KALKERKER EE VAN

References

- 譶 Hamilton, J. D. (1989). "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle". Econometrica 57.2, 357–384, DOI: [10.2307/1912559](https://doi.org/10.2307/1912559).
- **Nakagawa, K.** (2007). "Application of Tauberian Theorem to the Exponential Decay of the Tail Probability of a Random Variable". IEEE Transactions on Information Theory 53.9, 3239–3249. doi: [10.1109/TIT.2007.903114](https://doi.org/10.1109/TIT.2007.903114).
- **F** Reed, W. J. (2001). "The Pareto, Zipf and Other Power Laws". Economics Letters 74.1, 15-19. DOI: [10.1016/S0165-1765\(01\)00524-9](https://doi.org/10.1016/S0165-1765(01)00524-9).
- Toda, A. A. and K. Walsh (2015). "The Double Power Law in 暈 Consumption and Implications for Testing Euler Equations". Journal of Political Economy 123.5, 1177-1200. DOI: [10.1086/682729](https://doi.org/10.1086/682729).