Introduction 0000	Main result	Proof of main result 000000	Applications 000000000000000 00000000000000000000	Conclusion 00

Recent Advances in the Theory of Power Law and Applications

Brendan K. Beare¹ Alexis Akira Toda²

¹School of Economics, University of Sydney

²Department of Economics, University of California San Diego

May 22, 2024

A D M A

1/52

Introduction ●000	Main result	Proof of main result 000000	Applications 000000000000000 00000000000000000000	Conclusion 00

This talk

We study the tail behavior of

$$W_T = \sum_{t=1}^T X_t,$$

where

- $\{X_t\}_{t=1}^{\infty}$: some stochastic process,
- ► *T*: some stopping time.
- Main result: W_T has exponential tails under fairly mild conditions; simple formula for the tail exponent α.
- Example: if $\{X_t\}_{t=1}^{\infty}$ is IID and T is geometric with mean 1/p, then

$$(1-p)\,\mathsf{E}[\mathrm{e}^{\alpha X}]=1.$$

▲□▶▲□▶▲□▶▲□▶ □□ のQの

Introduction	Main result	Proof of main result	Applications	Conclusion
0●00		000000	000000000000000000000000000000000000	00

Why this problem is interesting

Many empirical size distributions obey power laws (e.g., city size (Gabaix, 1999), firm size (Axtell, 2001), income, consumption (Toda and Walsh, 2015), wealth, etc.)

$$P(S > s) \sim s^{-\alpha},$$

where S: size.

- ▶ Popular explanation is "random growth model": $S_t = G_t S_{t-1}$, where *G*: gross growth rate.
- ► Taking logarithm and setting $W_t = \log S_t$, $X_t = \log G_t$, we obtain the random walk

$$W_t = W_{t-1} + X_t.$$

Hence if $W_0 = 0$, we have $W_T = \sum_{t=1}^T X_t$.

3/52

Questions

- Most existing explanations using random growth assume IID Gaussian environment (geometric Brownian motion; Reed, 2001).
- Given ubiquity of power law distributions in empirical data (likely non-IID and non-Gaussian), generative mechanism should be robust (not depend on IID Gaussian assumptions).

Questions:

- 1. Do non-Gaussian, Markovian random growth processes generate Pareto tails?
- 2. If so, how is Pareto exponent determined?

Contribution

- Characterize tail behavior of random growth models with non-Gaussian, Markovian shocks.
 - 1. Analytical determination of Pareto exponent.
 - 2. Comparative statics.
- Two applications:
 - 1. Estimate random growth model using Japanese prefecture/municipality population data. Model consistent with observed Pareto exponent but *only after* allowing for Markovian dynamics.
 - 2. Estimate random growth model using US county daily COVID case data. Model consistent with observed Pareto exponent.

Basic setup of Beare and Toda (2022) Object of interest:

We seek to characterize the behavior of tail probabilities

$$P(W_T > w)$$
 and $P(W_T < -w)$

as $w \to \infty$, where...

Basic setup of Beare and Toda (2022) Object of interest:

We seek to characterize the behavior of tail probabilities

$$P(W_T > w)$$
 and $P(W_T < -w)$

as $w \to \infty$, where. . .

Markov additive process:

• $\{W_t, J_t\}_{t=0}^{\infty}$ is a Markov additive process, which means...

Basic setup of Beare and Toda (2022) Object of interest:

We seek to characterize the behavior of tail probabilities

$$P(W_T > w)$$
 and $P(W_T < -w)$

as $w \to \infty$, where...

Markov additive process:

• $\{W_t, J_t\}_{t=0}^{\infty}$ is a Markov additive process, which means... Hidden Markov state:

- ↓ {J_t}[∞]_{t=0} is a time homogeneous Markov chain taking values in N = {1,...,N}.
- The transition probability matrix is $\Pi = (\pi_{nn'})$, where $\pi_{nn'} = P(J_1 = n' | J_0 = n)$.
- ▶ Initial condition: ϖ is the $N \times 1$ vector of probabilities $P(J_0 = n), n = 1, ..., N.$

Introduction	Main result	Proof of main result	Applications	Conclusion
0000	00000	000000	000000000000000000000000000000000000	00
Basic setup				

Basic setup of Beare and Toda (2022)

Increment process:

•
$$W_0 = 0, W_t = \sum_{s=1}^t X_s.$$

- ▶ Distribution of increment $X_t = W_t W_{t-1}$ depends only on $(J_{t-1}, J_t) = (n, n')$.
- Special cases:
 - 1. If N = 1, then $\{X_t\}_{t=1}^{\infty}$ is IID.
 - 2. If $X_t = \text{constant conditional on } J_t$, then $\{X_t\}_{t=1}^{\infty}$ is a finite-state Markov chain.

Stopping time:

- $\{W_t\}_{t=0}^{\infty}$ stops with state-dependent probability.
- ► $v_{nn'} = P(T > t | J_{t-1} = n, J_t = n', T \ge t)$: conditional survival probability.
- $\Upsilon = (v_{nn'})$: survival probability matrix.

Introduction 0000	Main result OO● ○○○○○	Proof of main result 000000	Applications 000000000000000000000000000000000000	Conclusion 00
Basic setup				

Basic setup of Beare and Toda (2022)

Conditional moment generating function:

- ▶ For $s \in \mathbb{R}$, define $\psi_{nn'}(s) = \mathsf{E}\left[e^{sX_1} \mid J_0 = n, J_1 = n'\right] \in (0, \infty]$.
- $\Psi(s) = (\psi_{nn'}(s))$: $N \times N$ matrix of conditional MGFs.

Region of convergence:

We define

$$\mathcal{I} = \left\{ oldsymbol{s} \in \mathbb{R} : \psi_{nn'}(oldsymbol{s}) < \infty ext{ for all } n, n' \in \mathcal{N}
ight\}.$$

- I is an interval containing zero, with possibly infinite endpoints.

Introduction	Main result	Proof of main result	Applications	Conclusion
0000	●0000	000000	000000000000000000000000000000000000	00
Main result				

Assumption

Assumption

- 1. The matrix $\Upsilon \odot \Pi$ is irreducible.
- 2. There exists a pair (n, n') such that $v_{nn'} < 1$ and $\pi_{nn'} > 0$.

Introduction 0000	Main result ●0000	Proof of main result 000000	Applications 000000000000000 00000000000000000000	Conclusion 00
Main result				

Assumption

Assumption

- 1. The matrix $\Upsilon \odot \Pi$ is irreducible.
- 2. There exists a pair (n, n') such that $v_{nn'} < 1$ and $\pi_{nn'} > 0$.
- $\Upsilon \odot \Pi$ is Hadamard (entry-wise) product.
- A matrix A is irreducible if for any pair (n, n'), there exists k such that |A|^k_{nn'} > 0.
- Intuitively, irreducibility of Ŷ ⊙ Π means we can transition from n to n' eventually without stopping.
- $v_{nn'} < 1$ and $\pi_{nn'} > 0$ guarantees $T < \infty$ almost surely.
- ρ(A): spectral radius (largest absolute value of all eigenvalues) of A.

Introduction 0000	Main result ○●○○ ○●○○○	Proof of main result 000000	Applications 0000000000000000 0000000000000000000	Conclusion 00
Main result				

Main result

Theorem

As a function of $s \in \mathcal{I}$, the spectral radius $\rho(\Upsilon \odot \Pi \odot \Psi(s))$ is convex and less than 1 at s = 0. There can be at most one positive $\alpha \in \mathcal{I}$ such that

 $\rho(\Upsilon \odot \Pi \odot \Psi(\alpha)) = 1,$

and if such α exists in the interior of ${\mathcal I}$ then

$$\lim_{w\to\infty}\frac{1}{w}\log P(W_T > w) = -\alpha.$$

Similar statement holds for lower tail (-β < 0 instead of α > 0).

Introduction 0000	Main result ○○● ○○●○○	Proof of main result	Applications 000000000000000 0000000000000000	Conclusion 00
Main result				

Determination of α and β

Introduction 0000	Main result 000●0	Proof of main result 000000	Applications 0000000000000000 0000000000000000000	Conclusion 00
Main result				

Refinement

Theorem

Let everything be as above. Then there exist A, B > 0 such that

$$\lim_{w \to \infty} e^{\alpha w} P(W_T > w) = A,$$
$$\lim_{w \to \infty} e^{\beta w} P(W_T < -w) = B$$

except when there exist c > 0 and $a_{nn'} \in \mathbb{R}$ such that

$$\operatorname{supp}(X_1|J_0=n,J_1=n')\subset a_{nn'}+c\mathbb{Z}$$

for all $n, n' \in \mathcal{N}$. (We can take $a_{nn} = 0$ if $v_{nn}\pi_{nn} > 0$.)

Introduction 0000	Main result 0000●	Proof of main result 000000	Applications 000000000000000 00000000000000000000	Conclusion 00
Main result				

Geometrically stopped random growth processes

Theorem

Let everything be as above. Let $S_0 > 0$ be a random variable independent of W_T satisfying $E[S_0^{\alpha+\epsilon}] < \infty$ for some $\epsilon > 0$, and define the random variable $S = S_0 e^{W_T}$. Then there exist numbers $0 < A_1 \le A_2 < \infty$ such that

$$A_1 = \liminf_{s \to \infty} s^{lpha} \mathrm{P}(S > s) \leq \limsup_{s \to \infty} s^{lpha} \mathrm{P}(S > s) = A_2,$$

with $A_1 = A_2 = A$ unless there exist c > 0 and $a_{nn'} \in \mathbb{R}$ such that $supp(X_1|J_0 = n, J_1 = n') \subset a_{nn'} + c\mathbb{Z}$ for all $n, n' \in \mathcal{N}$.

• S has a Pareto upper tail with exponent α .

Introduction 0000	Main result	Proof of main result ●00000	Applications 000000000000000 00000000000000000000	Conclusion 00
ldea				

Proof of main result

The proof uses several mathematical results:

- 1. Nakagawa (2007)'s Tauberian Theorem and its refinement
- 2. Convex inequalities for spectral radius
- 3. Perron-Frobenius Theorem
- 4. Residue formula for matrix pencil inverses
- For the IID case, we can avoid 2–4 above.

▶ Skip proof

Introduction 0000	Main result	Proof of main result ○●○○○○	Applications 000000000000000 0000000000	Conclusion 00
ldea				

Laplace transform

▶ For a random variable X with cdf F, let

$$\psi(s) = \mathsf{E}[\mathrm{e}^{sX}] = \int_{-\infty}^{\infty} \mathrm{e}^{sx} \, \mathrm{d}F(x)$$

be its moment generating function (mgf), which is also known as the (two-sided) Laplace transform.

For $z \in \mathbb{C}$, by definition of Lebesgue integral,

$$\psi(z) = \mathsf{E}[\mathrm{e}^{zX}] = \int_{-\infty}^{\infty} \mathrm{e}^{zx} \,\mathrm{d}F(x)$$

exists and finite if and only if $\operatorname{Re} z \in \mathcal{I}$. $\psi(z)$ holomorphic on strip of analiticity $\mathcal{S} = \{z \in \mathbb{C} : -\beta < \operatorname{Re} z < \alpha\}$.

Introduction 0000	Main result	Proof of main result 00●000	Applications 000000000000000 00000000000000000000	Conclusion 00
l den				

Strip of holomorphicity

Introduction 0000	Main result 00000	Proof of main result 000●00	Applications 000000000000000 0000000000000000	Conclusion 00
ldea				

Tauberian theorem

Theorem (Essentially, Theorem 5* of Nakagawa, 2007) Let X be a real random variable and $\psi(z) = \mathbb{E}[e^{zX}]$ its Laplace transform with right abscissa of convergence $0 < \alpha < \infty$ and strip of holomorphicity S. Suppose $A := \lim_{s\uparrow\alpha} (\alpha - s)\psi(s)$ exists, and let B be the supremum of all b > 0 such that $\Psi(z) + A(z - \alpha)^{-1}$ continuously extends to $S_b^+ = S \cup \{z \in \mathbb{C} : z = \alpha + it, |t| < b\}$. Suppose that B > 0. Then we have

$$\begin{split} \frac{2\pi A/B}{\mathrm{e}^{2\pi\alpha/B}-1} &\leq \liminf_{x\to\infty} \mathrm{e}^{\alpha x} \mathrm{P}(X > x) \\ &\leq \limsup_{x\to\infty} \mathrm{e}^{\alpha x} \mathrm{P}(X > x) \leq \frac{2\pi A/B}{1-\mathrm{e}^{-2\pi\alpha/B}}, \end{split}$$

where the bounds should be read as A/α if $B = \infty$.

<ロト < 同ト < ヨト < ヨト 三日 の

Discussion

▶ By previous result, taking logarithm and letting $x \to \infty$, we get

$$\lim_{x \to \infty} \frac{\log P(X > x)}{x} = -\alpha,$$

which is Nakagawa (2007)'s main result.

• Example: mgf of exponential distribution with exponent α is

$$\psi(z) = \int_0^\infty \alpha \mathrm{e}^{-\alpha x} \mathrm{e}^{zx} \, \mathrm{d}x = \frac{\alpha}{\alpha - z}$$

so we can take $A = \alpha$ and $B = \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のQ@

Introduction 0000	Main result	Proof of main result 00000●	Applications 000000000000000 00000000000000000000	Conclusion 00
ldea				

Proof of main result for IID case

- Let $\{X_t\}_{t=1}^{\infty}$ be IID with mgf $\psi_X(z) = \mathsf{E}[\mathrm{e}^{zX}]$.
- mgf of $W_T = \sum_{t=1}^T X_t$ when T is geometric with mean 1/p is

$$\psi_W(z) = \sum_{k=1}^{\infty} (1-p)^{k-1} p(\psi_X(z))^k = \frac{p\psi_X(z)}{1-(1-p)\psi_X(z)}.$$

- Since ψ_X(z) holomorphic, pole of ψ_W(z) satisfies ψ_X(z) = 1/(1-p).
- Using convexity of $\psi_X(s + it)$ with respect to s, easy to show pole is simple.
- Hence assumption of Tauberian theorem satisfied. Tail exponents satisfy

$$\mathsf{E}[\mathrm{e}^{\alpha X}] = \mathsf{E}[\mathrm{e}^{-\beta X}] = \frac{1}{1-p}.$$

Introduction 0000	Main result	Proof of main result	Applications ●000000000000000000000000000000000000	Conclusion 00
Japanese municipalit	y populations			

Application 1: Power law in Japanese municipalities

Main question: are time series properties of population dynamics estimated from panel consistent with a stationary Pareto distribution estimated from cross-section?

(日)

23/52

- Estimate either at
 - 47 prefecture level (1873-) or
 - 1741 municipality level (1970-)

Introduction 0000	Main result	Proof of main result	Applications 000000000000000000000000000000000000	Conclusion 00
Japanese municipality p	opulations			

Historical background

- Edo era: 1603-1868. Japan was divided into provinces called han, which were controlled by feudal lords called daimyō. No free movement of people across regions.
- ▶ 1868: Meiji Restoration. Free movement of people.
- 1871: Abolition of the han system (haihan-chiken). Number and boundary of prefectures settled by 1889
- Boundaries of modern prefectures largely follow those of ryoseikoku (province) established in the Nara era (8th century)

Introduction 0000	Main result	Proof of main result	Applications 00●0000000000000000000000000000000000	Conclusion
Japanese municipality pop	oulations			

Modern prefectures

25/52

Introduction 0000	Main result	Proof of main result 000000	Applications 000000000000000000000000000000000000	Co
Japanese municipali	ty populations			

Ryoseikoku

Introduction	Main result	Proof of main result	Applications	Conclusion
0000		000000	000000000000000000000000000000000000	00
lananese municipali	ty populations			

Population of selected prefectures

Introduction 0000	Main result	Proof of main result	Applications 000000000000000000000000000000000000	Conclusion 00
Japanese municipality po	pulations			

Cross-sectional estimation

- For each year, assume that the cross-sectional distribution of prefecture population is Pareto-lognormal (product of independent Pareto and lognormal distributions).
- Three parameters (μ, σ, α), mean and standard deviation of lognormal component and Pareto exponent.
- Lognormal is special case by setting $\alpha = \infty$.

Introduction 0000	Main result 000 00000	Proof of main result 000000	Applications 000000000000000000000000000000000000	Conclusion 00
Japanese municipality po	oulations			

Pareto exponents

≣ا≡ ୭۹୯ 29/52

Introduction 0000	Main result	Proof of main result	Applications 000000000000000000000000000000000000	Con 00
lapanese municipali	ty populations			

Log-log plot

30/52

Introduction 0000	Main result	Proof of main result	Applications 000000000000000000000000000000000000	Conclusion 00
Japanese municipality p	opulations			

Likelihood ratio tests

Panel estimation

- ► Assume relative size S_{it} of prefecture i in year t follows random growth process S_{i,t+1} = G_{i,t+1}S_{it}, where G_{i,t+1}: gross growth rate between year t and t + 1.
- N-state Markov switching model with conditionally Gaussian shocks:

$$\log G_{i,t+1} \mid n_{it} = n \sim N(\mu_n, \sigma_n^2),$$

where state n_{it} evolves as a Markov chain with transition probability matrix Π .

- Consider N = 1, 2, 3; estimate parameters from post war data by maximum likelihood using Hamilton (1989) filter.
- Compute implied Pareto exponent by solving

$$\rho(\Pi \operatorname{diag}(\mathrm{e}^{\mu_1 s + \sigma_1^2 s^2/2}, \dots, \mathrm{e}^{\mu_N s + \sigma_N^2 s^2/2})) = \frac{1}{1 - p}.$$

32/52

ヨヨー わすつ

Introduo 0000		Main result	Proof of main result 000000	Applications 000000000000000000000000000000000000	Conclusion 00
Japanes	panese municipality populations				
Esti	matio	on of rando	m growth model		
	N	1			
	П	1			
	μ	-0.0035			
	σ	0.0111			
	log L	9,925			
	α	56.7			
	α_{2015}	1.3			

Introduction 0000	Main result	Proof of main result	Applications 000000000000000000000000000000000000	Conclusion 00
Japanese municipality populations				

Estimation of random growth model

Ν	1	2	
П	1	$\begin{bmatrix} 0.9754 & 0.0246 \\ 0.0283 & 0.9717 \end{bmatrix}$	
$\mu \sigma$	-0.0035 0.0111	$egin{bmatrix} -0.0030 & -0.0030 \end{bmatrix}^{ op} \ egin{bmatrix} 0.0029 & 0.0169 \end{bmatrix}^{ op} \end{cases}$	
$\log L$	9,925 56.7	11,638 26.8	
α_{2015}	1.3	1.3	

Introduction	Main result	Proof of main result	Applications	Conclusion
0000		000000	000000000000000000000000000000000000	00
lananese municipali	ty populations			

Estimation of random growth model

Ν	1	2	3
П	1	0.9754 0.0246 0.0283 0.9717	0.9439 0.0561 0.0000 0.0145 0.9671 0.0184 0.0210 0.0141 0.9649
μ	-0.0035	$\begin{bmatrix} -0.0030 & -0.0030 \end{bmatrix}^ op$	$\begin{bmatrix} -0.0122 & -0.0022 & 0.0084 \end{bmatrix}^{ op}$
σ	0.0111	$\begin{bmatrix} 0.0029 & 0.0169 \end{bmatrix}^ op$	$\begin{bmatrix} 0.0053 & 0.0026 & 0.0199 \end{bmatrix}^ op$
log L	9,925	11,638	12,388
α	56.7	26.8	1.61
α_{2015}	1.3	1.3	1.3

Cross-sectional estimation for municipalities

Estimate Pareto exponent by maximum likelihood (Hill estimator).

36/52

Introduction	Main result	Proof of main result	Applications	Conclusion
0000		000000	000000000000000000000000000000000000	00
Japanese municipali	ty populations			

Cross-sectional estimation for municipalities

Introduction	Main result	Proof of main result	Applications	Conclusion
0000		000000	000000000000000000000000000000000000	00
Japanese municipali	ty populations			

Panel estimation for municipalities

- Consider N = 1,...,5; estimate parameters by maximum likelihood using Hamilton (1989) filter and expectation-maximization algorithm.
- Compute implied Pareto exponent by solving

$$(1-p)\rho(\operatorname{\mathsf{\Pi}}\operatorname{\mathsf{diag}}(\mathrm{e}^{\mu_1s+\sigma_1^2s^2/2},\ldots,\mathrm{e}^{\mu_Ns+\sigma_N^2s^2/2}))=1.$$

Introduction	Main result	Proof of main result	Applications	Conclusion
0000		000000	000000000000000000000000000000000000	00
Japanese municipali	ty populations			

Panel estimation for municipalities

- Consider N = 1,...,5; estimate parameters by maximum likelihood using Hamilton (1989) filter and expectation-maximization algorithm.
- Compute implied Pareto exponent by solving

$$(1-p)\rho(\Pi \operatorname{diag}(e^{\mu_1 s + \sigma_1^2 s^2/2}, \dots, e^{\mu_N s + \sigma_N^2 s^2/2})) = 1.$$

- Choosing mean age $\overline{T} = 1/p$:
 - Meiji Restoration is in 1868, so lower bound $\overline{T} = 150$.
 - Kamakura Shogunate started in 1185, so upper bound T

 = 1000.
 - Tokugawa Shogunate started and moved capital to Tokyo in 1603, so $\overline{T} = 400$ reasonable.
 - ► Hence consider p = 1/1000, 1/400, 1/150.

Introduction 0000	Main result 00000	Proof of main result	Applications 000000000000000● 00000000000000	Conclusion 00
Japanese municipality pop	ulations			

• With N = 1 (IID), $\alpha \approx 8 \gg 1$.

Introduction 0000	Main result	Proof of main result	Applications ○○○○○○○○○○○○○○○ ●○○○○○○○○○○○	Conclusion 00
COVID-19 cases				

Application 2: Power law in COVID-19 cases

- Main question: are growth dynamics and random stopping consistent with Pareto exponent estimated from cross-section?
- Analysis from Beare and Toda (2020)
- Data:
 - Daily COVID-19 case data from January 2020 to March 2020
 - US counties (2,121 counties with at least one case out of 3,243 counties)
 - Merge 5 boroughs of New York City as "New York"

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

SIR model

Susceptible-Infected-Recovered (SIR) model:

S

$$\dot{S} = -eta SI,$$

 $\dot{I} = eta SI - \gamma I,$
 $\dot{R} = \gamma I,$
 $+ I + R = 1$

- At beginning of epidemic, we have $S \approx 1$, $I \ll 1$, $R \approx 0$
- ▶ Easy to show that cumulative cases C := I + R grows at rate $\beta \gamma$
- In practice, cases grow randomly

Introduction 0000	Main result 000 00000	Proof of main result 000000	Applications 000000000000000000000000000000000000	Conclusion 00
COVID-19 cases				

Cases on 3/31/2020

Testing Gibrat's law

- If Gibrat's law holds, growth rate of cases should be independent of current cases
- For each date t, estimate cross-sectional regression

$$\Delta \ln c_{i,t+1} = \beta_{0t} + \beta_{1t} \ln c_{it} + \beta_{2t} \Delta \ln c_{it} + \beta_{3t} D_{it} + \varepsilon_{it}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

44/52

Here

- c_{it}: cumulative cases in country i on date t
- D_{it}: number of days elapsed since first case reported
- ε_{it}: error term
- Gibrat's law holds if $\beta_{1t} = \beta_{2t} = \beta_{3t} = 0$

Introduction 0000 Main resu

Proof of main result

Applications

Conclusion

COVID-19 cases

Daily estimates of $\beta_{0t}, \beta_{1t}, \beta_{2t}, \beta_{3t}$

Introduction	Main result	Proof of main result	Applications	Conclusion
0000		000000	000000000000000000000000000000000000	00
COVID-19 cases				

Distribution of growth rate of cases

Introduction	Main result	Proof of main result	Applications	Conclusion
0000	00000	000000		00
COVID-19 cases				

Distribution of days since first case

Introduction 0000	Main result 00000	Proof of main result	Applications ○○○○○○○○○○○○○○ ○○○○○○○○○○○○○○○	Conclusion 00
COVID-19 cases				

Distribution of growth rate is mixture of point mass at 0 and gamma:

$$f(x) = \pi \delta(0) + (1 - \pi) \frac{\lambda^{lpha}}{\Gamma(lpha)} x^{lpha - 1} e^{-\lambda x}$$

with $(\pi, \alpha, \lambda) = (0.128, 2.30, 10.4)$

Distribution of days since first case is truncated logistic:

$$P(T = n) = \frac{(1 + \phi)(1 - q)q^{n-1}}{(1 + \phi q^{n-1})(1 + \phi q^n)}$$

(日)

48/52

with $(q, \phi) = (0.825, 4.06)$

Introduction	Main result	Proof of main result	Applications	Conclusion
0000		000000	000000000000000000000000000000000000	00
COVID-19 cases				

MGF of log cases is

$$M_Y(z) = \sum_{n=1}^{\infty} P(T = n) M(z)^n,$$

where

$$M(z) = \pi + (1-\pi)(1-z/\lambda)^{-lpha}$$

- Can show $M_Y(z)$ has pole ζ with $M(\zeta) = 1/q$, which gives Pareto exponent
- Solving equation, get

$$\zeta = \lambda \left[1 - \left(\frac{1 - \pi}{1/q - \pi} \right)^{1/lpha}
ight] = 0.928$$

49/52

Introduction 0000	Main result 000 00000	Proof of main result 000000	Applications 000000000000000000000000000000000000	Conclusion 00
COVID-19 cases				

Conclusion and open questions

Determination of Pareto exponent under

- Markov modulation
- Random stopping
- Many data sets known to obey power law, but generative mechanism has not been tested often
- Evidence for
 - Japanese population dynamics
 - COVID dynamics

Introduction 0000	Main result	Proof of main result 000000	Applications 000000000000000 0000000000	Conclusion ○●

Conclusion and open questions

- We considered random multiplicative growth process
 - $S_t = G_t S_{t-1}$, where S_t is "size" and G_t is "growth rate"
 - This process is convenient because it becomes random walk after taking logarithm, and we can explicitly compute Laplace transform
 - We can also provide certain economic model that generates this process
- However, this assumption is restrictive, especially from economic theoretical point of view
- More generally, it would be nice if we can generalize to "asymptotically multiplicative growth process"

$$S_t = f(S_{t-1}, X_t),$$

where f is asymptotically linear in sense that

$$\lim_{s \to \infty} \frac{f(s, x)}{s} = g(x)$$

References

Axtell, R. L. (2001). "Zipf Distribution of U.S. Firm Sizes". Science 293.5536, 1818–1820, DOI: 10.1126/science.1062081.

Beare, B. K. and A. A. Toda (2020). "On the Emergence of a Power Law in the Distribution of COVID-19 Cases". Physica D: Nonlinear Phenomena 412, 132649. DOI:

10.1016/j.physd.2020.132649.

Beare, B. K. and A. A. Toda (2022). "Determination of Pareto Exponents in Economic Models Driven by Markov Multiplicative Processes". *Econometrica* 90.4, 1811–1833. DOI: 10.3982/ECTA17984.

Gabaix, X. (1999). "Zipf's Law for Cities: An Explanation". Quarterly Journal of Economics 114.3, 739–767. DOI: 10.1162/003355399556133. ◆□▶ ◆□▶ ◆□▶ ◆□▶ 三日 ぐ

References

- Hamilton, J. D. (1989). "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle". *Econometrica* 57.2, 357–384. DOI: 10.2307/1912559.
- Nakagawa, K. (2007). "Application of Tauberian Theorem to the Exponential Decay of the Tail Probability of a Random Variable". IEEE Transactions on Information Theory 53.9, 3239–3249. DOI: 10.1109/TIT.2007.903114.
- Reed, W. J. (2001). "The Pareto, Zipf and Other Power Laws". *Economics Letters* 74.1, 15–19. DOI: 10.1016/S0165-1765(01)00524-9.
- Toda, A. A. and K. Walsh (2015). "The Double Power Law in Consumption and Implications for Testing Euler Equations". *Journal of Political Economy* 123.5, 1177–1200. DOI: 10.1086/682729.